Solvability of indefinite stochastic Riccati equations and linear quadratic optimal control problems
نویسندگان
چکیده
A new approach to study the indefinite stochastic linear quadratic (LQ) optimal control problems, which we called the “equivalent cost functional method”, is introduced by Yu [15] in the setup of Hamiltonian system. On the other hand, another important issue along this research direction, is the possible state feedback representation of optimal control and the solvability of associated indefinite stochastic Riccati equations. As the response, this paper continues to develop the equivalent cost functional method by extending it to the Riccati equation setup. Our analysis is featured by its introduction of some equivalent cost functionals which enable us to have the bridge between the indefinite and positivedefinite stochastic LQ problems. With such bridge, some solvability relation between the indefinite and positive-definite Riccati equations is further characterized. It is remarkable the solvability of the former is rather complicated than the latter hence our relation provides some alternative but useful viewpoint. Consequently, the corresponding indefinite linear quadratic problem is discussed for which the unique optimal control is derived in terms of state feedback via the solution of Riccati equation. In addition, some example is studied using our theoretical results.
منابع مشابه
Solvability Conditions for Indefinite Linear Quadratic Optimal Stochastic Control Problems and Associated Stochastic Riccati Equations
A linear quadratic optimal stochastic control problem with random coefficients and indefinite state/control weight costs is usually linked to an indefinite stochastic Riccati equation (SRE), which is a matrix-valued quadratic backward stochastic differential equation along with an algebraic constraint involving the unknown. Either the optimal control problem or the SRE is solvable only if the g...
متن کاملSolvability and asymptotic behavior of generalized Riccati equations arising in indefinite stochastic LQ controls
The optimal control problem in a finite time horizon with an indefinite quadratic cost function for a linear system subject to multiplicative noise on both the state and control can be solved via a constrained matrix differential Riccati equation. In this paper, we provide general necessary and sufficient conditions for the solvability of this generalized differential Riccati equation. Furtherm...
متن کاملIndefinite Stochastic Linear Quadratic Control and Generalized Differential Riccati
A stochastic linear quadratic (LQ) control problem is indefinite when the cost weighting matrices for the state and the control are allowed to be indefinite. Indefinite stochastic LQ theory has been extensively developed and has found interesting applications in finance. However, there remains an outstanding open problem, which is to identify an appropriate Riccati-type equation whose solvabili...
متن کاملCharacterizing all optimal controls for an indefinite stochastic linear quadratic control problem
This paper is concerned with a stochastic linear quadratic (LQ) control problem in the infinite time horizon, with indefinite state and control weighting matrices in the cost function. It is shown that the solvability of this problem is equivalent to the existence of a so-called static stabilizing solution to a generalized algebraic Riccati equation. Moreover, another algebraic Riccati equation...
متن کاملIndefinite Stochastic Linear Quadratic Control and Generalized Differential Riccati Equation
We consider a stochastic linear–quadratic (LQ) problem with possible indefinite cost weighting matrices for the state and the control. An outstanding open problem is to identify an appropriate Riccati-type equation whose solvability is equivalent to the solvability of this possibly indefinite LQ problem. In this paper we introduce a new type of differential Riccati equation, called the generali...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Systems & Control Letters
دوره 68 شماره
صفحات -
تاریخ انتشار 2014